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A Modified Tree Co 
Don’t Laugh; it Runs 

JOSHUA E. BARNES* 

I describe a modification of the Barnes-Hut tree algoritkn together with a series of numeri- 
cal tests of this method. The basic idea is to improve the performarce of the code on heavi!y 
vector-oriented machines such as :he Cyber 205 by exploiting the fact that ntartp particies 
tend to base very similar interaction lists, By building an interaction list good everyahere 
-within a cell containing a modest number of particles and reusing this interactioc list for each 
particie in the ceil in turn, the balance of computation can be shifted from recursive descer,:. 
to force summation. Instead of vectorizing tree descent, thts scheme simply a.<oids it in fzvo? 
of force summation. which is quite easy to vectorize. A welcome side-ekt of this modkation 
is that the force calculation, which now treats a iar_eer fraction oi the local interactions 
euacrty. is significantly more accurate than the unmodified method. I:’ 19YD !\cadem%c Pai. Ins 

I. INTR~DUCTIOK 

Hierarchical or “tree” methods of soiving the gravitational N-body probiem have 
attracted increasing attention in recent years [l-9]. Tree methods are interesting 
because they can handle arbitrarily complicated mass distributions with asymptoric 
computing times of O(iVlog N) or even O(N) in terms of the particle num*ber X: 
as opposed to O(N’) for a direct summation code. The main application of 
hierarchical methods is thus to problems involving very large iv, say -IO4 or more, 
where the advantage over older methods is greatest. In practice, this focus on 
large-N problems means that tree codes must run well on vector-oriented srrper-. 
computers, since at present such machines offer the only large computing resource 
available to most experimenters. 

These factors have motivated several workers to consider implementing tree algc- 
rithms on present-generation supercomputers. This problem is not trivial, because 
the recursive flow of control required to descend the tree structure is at odds wirh 
the linear organization of vector processors. Wectorization of the Barnes and Hiur 
[4] tree algorithm has been approached in several different ways. To begm w~tk, 
Hernquist [7] noted that the force calculation on a particle y can be divided into 
two phases: recursive tree descent, constructing an i~le~crir/~ ilst of ail particles 
and cells which interact with p, and force summation, which involves addiag LZLQ~ aLI 
the terms on the interaction list. Force summation is easily vectorized, delivering a 
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significant speedup over an unvectorized code, but much scalar CPU time is still 
spent descending the tree. A completely vectorized approach is described by 
Makino [IO]; vectorizing the tree search “across particles,” the algorithm performs 
independent tree descents for many particles simultaneously. This elegant method 
can be viewed as simulating a tree algorithm for a “fine-grained” parallel processor 
such as the Connection Machine [11] on a conventional vector processor; in 
practice, however, it requires hardware features such as indirect addressing not 
uniformly available on all vector machines. Yet another approach has been 
developed by Hernquist [12], vectorizing tree descent “level by level,” a procedure 
which works well on a Cray. 

A major regularity present in all hierarchical algorithms is that the representation 
of the gravitational field used to calculate the force on particle p is very similar to 
the representation used to compute the force on nearby particle q. This regularity 
is exploited in, for example, the fast multiple method (FMM) of Greengard and 
Rokhlin [j], which constructs a multiple expansion of the field due to the mass 
external to some chosen cell, and then uses this expansion to evaluate the external 
force on each particle within the cell. The expense of constructing the field 
expansion is thus shared between the particles within the cell. Clearly, there is an 
optimum number of particles per cell-too few, and the cost of the multipole 
expansions dominates: too many, and the cost of evaluating the local field by direct 
summation dominates. This optimum choice is briefly discussed in connection with 
an adaptive version of the FMM [8]. 

The same sort of strategy can be used to get around the problem of vectorizing 
the Barnes-Hut algorithm. If n is a node on the interaction list L, of p, and the dis- 
tance between rz and p is much greater than the distance between p and q, then 
most likely n E L,. This leads to the suggestion that Hernquist’s two-phase [7] 
method be modified to construct an interaction list L, guaranteed to satisfy the 
usual Barnes-Hut tolerance condition [/d < 6’ everywhere within a small cell c, con- 
taining p, q, and a few other particles. L, may then be (re)used to evaluate the force 
on p, q, etc. in turn, effectively reducing the number of tree descents required by a 
factor equal to the number of particles in c. Instead of vectorizing tree descent, this 
“non-vectorization” amounts to avoiding, as much as possible. that part of the 
calculation which is hard to vectorize. Details are presented in Section II. 

By necessity, the interaction list L,. will generally contain more information than 
the list Lp for any particle p within c; if node n E L,, then either n or its 
descendants E L,. As a consequence, the modified method should deliver somewhat 
more accurate forces than the original Barnes-Hut algorithm. In fact, this improve- 
ment is large enough to be important when comparing the modilied method to 
other versions of the Barnes--Hut algorithm. Section III presents tests of the 
modified algorithm, including a stringent series of experiments demonstrating that 
as the timestep dt and force calculation tolerance 8 are jointly refined, the trajec- 
tories of individual particles converge to a definite limit. Timing tests presented in 
Section IV show that the modified algorithm is significantly faster when run on a 
vector processor. 
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II. DESCPJPTIONS OF THE Mmmc 

Where an implementation op the RarnesHut algorithm would normally loon 
ol<er particles from I to N and compute the force on each in turn, the rnodnied 
algorithm must loop over the members of a seiected set of cells C, construcring an 
interaction list for each ceil c in C and using it to compute forces on all particfez. 

in c. In the present implementation, a cell c is in C if it encloses a total of fi,,:!. 
or fewer particles r:izd its parent cell encloses more than IZ,,,~ particles. Thus the se:; 
C covers the entire simulation volume without overlap. partitioning it into celis 
containing at most ncrLt particles each: moreover, C is the smallest set with ihex 
properties. 

The $e~~e~ce-forge-calculation routine does a depth-first recursive descent of tire 
tree structure, starting at the tree-root. When it finds a cell enclosing ~-~~~ti~~~ 01 
fewer particles, it constructs an interaction list good everywhere within that celi and 
k~vokes pe~f~~rn-agree-calculation. In the SCHEME dialecr of Lisp [1311 r:?~ 
algorithm may be stated as follows: 

(define tree-root J 

i define n-critical . ..) 

i define (sequence-force-calculation node ) 
icond ((body? node) 

(perhrm-force-calculation node (interaction-list node tree-root i) s 
\ ( < (particle-count node b n-critical ) 

rform-force-calculation node (interaction-List node tree-ruot I ) ) 
i etse 
{do ((dew ~descendents node) (cdr dew))) 

((null? dew) [ )i 
(sequence-force-calculation (car desc ) i))) I 

The next routine, perform-force-calculation, continues the iWi*rSiVe dES.Seni, USlEg 
~~ter~~ist to evaluate the force on each particle it comes to. 

! define (perform-force-calculation node inter-list ) 
icond ((body? node) 

(set-force! node (sum-force node inter-list)) ) 
(else 
(do ((desc (descendents node) (cdr desc 1)) 

((null? dew) ( )j 
(~~f~~rn-force-calcuiation (car desc) inter-list 1))) I 

Here sMm-force is a vectorized force summation routine which hides details of rhe 
force calculation, including evaluation of the quadrupoie contribution and a correc- 
tion for self-interaction. 

The interaction-list function walks the tree structure and constructs a 5s~ of 

particles and cells obeying the Barnes-Hut opening-angle criterion with rcspeci to 
any point within node. 
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FIG. 1. The cooked-distance is the distance d from the center of mass (0 ) of cell c the nearest point 
in node II. 

(define (interaction-list node tree) 
(cond ((must-subdivide? tree node) 

(concat 
(map (lambda (tj (interaction-list node t)) 

(descendents tree) ))) 
(else 
(list tree)))) 

Here the map function constructs a list of interaction lists for the descendents of 
tree, which are then spliced together by the concat function. 

The predicate must-subdivide. 7 decides if interaction-list must examine the 
descendents of tree to construct an interaction list valid everywhere within node. 

(define theta . ..) 

(define (must-subdivide? tree node j 
(and (cell? tree) 

( > (diameter tree) 
(* theta 

(cooked-distance (cm-position tree) 
(centroid node) 
(diameter-node )) j ))) 

This test is very similar to the standard Barnes-Hut algorithm, except that the 
minimum distance cooked-distance between the center of mass of tree and any point 
within node is computed; see Fig. 1. 

III. NUMEKICAL TESTS 

To establish the reliability of the modified tree algorithm, I ran an extensive 
series of test calculations. It seemed crucial to check the code on a reasonably 
realistic problem, such as the head-on collision and merger of two spherical 
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“galaxies” used here. There are, however, no known analytic SO~U~~O~S with which 
to compare such calculations, so the validity of the numerical models had to be 
tested by showing that. as sources of error were reduced, the results converged Io 
a well-defined limit. This in itself does not prove the limit is the right one, but ‘bx 
appealing to the existence and uniqueness of solutions of ODES. a good cwz can 
be made for the correctness of the N-body calculations. 

The tests presented here employed a head-on, parabolic encounter between twc 
5tY, = 5 King [ 141 models. Units were chosen so that G = 1 and each galaxy had 
a total mass and three-dimensional I’~IZS velocity dispersion of l;nity. A iota! ol 
:t’= 4096 particles were used, gravitational potentials were softened by the csual 
(Y’ + E’ ) --I ’ form with E = 0.025, and the equations of motion were integrated with 

a time-centered leap-frog. The galaxies were released 2 length units apart and given 
velocities consistent with falling together from ~XJ. The evolution of the system is 
shown in Fig. 2. The galaxies passed through each other at e 32 1 time unit and 
fseparated by b 1.5 length units before falling back together and finally merging at 
t 2 4. On the whole, the results of these simulations are quite consistent with earlier 
ead-on merger calculations [ lj]. 

For the first test, a series of models were run varying the force accuracy and 
integration timestep but fixing all other parameters. After some prehminarry 
experimentation, the maximum number of particles sharing an interaction fist was 
set to Y;,,it = 64. This gave a speedup of -3 over an unmodified Barnes-Hut code 
when compared on a Cyber 205; a similar improvement was obtained on a 
Cray XMP. The parameter grid is shown in Fig. 3. Since all runs started from 
exactly the same initial data, their evolution could be compared on a particie-by- 
particle basis. Let ri(t: u) and I;([: b) be the position vectors of particle i at time i 
in simulations LI and 5, respectively. At first, r,(O; a) = r,(O; h), but the trajectories 
wiil subsequently diverge due to differences in force caicuiation and/or integrarion.. 
The numbers tabulated between the runs are medians of d~,r lri(t; a)-r,(r: hi:. 
evaluated at I = 4. Since the distribution of dr, does not possess, for example, an 
unusually long tail, the median is a good indication of the overall difference 
between simulations. Further discussion of the Ari distribution is postponed pend- 
ing a more complete investigation. 

Examining Fig. 3, it is clear that as the force calculation and time integration are 
jointly refined, the calculated trajectories do indeed converge to a definite iimit. 
This is a reassuring if not unexpected result; one would scarcely believe a simulh- 
tion of a co!lisiotdess system which did not pass this kind of test. It is? however, 
gratifying to note that the errors due to these two parameters appear to be iargeiy 
independent of each other; the overall improvement on refining dr does r,ot depend 
on the value of 0. and vice versa. 

It IS also interesting if not surprising that for a given value of 8, the modified 
algorithm appears to be significantly more accurate than the original 
a’lgorithm 193. This increased accuracy comes at a price. of course: the more par- 
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FIG. 2. Head-on collision and merger of two spherical galaxies; elapsed time in model units is shown 
at the upper right of each frame. 
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FIG. 3. Grid of models in timestep YS force cakuktion accuracy plane. 211 started from t!ie same 

initial conditions; each dot represents a calcu!ation. The numbers olotted between models are median 
distances of corresponding particles after f =1 time units. The left-MOSt column Oc runS Y.irs nude 

xit’hout qurdrupoie c::rrections: all others included them. 

ticlee sharing the interaction list, the longer the lisr, and hence the u;~f’e time q32nt 
in vectorized f~orce summations. To attain a given levei of force calciitlatiors. 
accuracy. is it better to reduce 8 or increase FZ,.,~~? This quesiio:: motivared the 2et;t 
set of tests. 

1 b) Convergei7ce in rhe 0, i~,,,~ Plane 

In rhe second test 6 and nCrit were varied. while ail other parameters WEPT bed. 
wi:h a timestep dr = 1%0. The resulting grid is shown in Fig. 4, in&tiding datz ,rr~arn 

1 0.7 0.5 8 

* standard BH ai~odthm B 

FE. 4. Grid of models in ncri, vs H plane, all started from the same initial conditions. each dot 
represents a calculation. The numbers plotted between models are median distances of correspondmg 
Tarticles after i = 4 time units. The top row of runs was made lvith the standard BarnessHut aigorirhm; 
all other runs were made using the modified algorithm. 
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the standard Barnes-Hut algorithm [9] along the top. The pattern of median dvi 
values shows that as either 8 -+ 0 or ncrit --f N, the modified algorithm converges on 
a definite answer. This is expected since, in either limit, the modified algorithm 
reverts to an exact, O(N2) scheme. 

Before comparing the accuracy of the old and new methods, the character of 
remaining errors must be considered. Much of the error removed by the modified 
algorithm was presumably contributed by nearby cells, which typically contain only 
a few particles each, and therefore tend to have large statistical octopole and higher 
moments. On the other hand, the effect of reducing 0 is to sample the mass distribu- 
tion more finely on all scales. Thus, although 0 -+ 0 and ncrit -+ N both approach the 
same limit, they nevertheless do so from somewhat different “directions.” In other 
words, the distributions of remaining errors are different; the modified algorithm is 
more faithful locally. With this point noted, the modified algorithm working at 
8 = d1 and Yl,,it = 64 appears comparable in accuracy to the Barnes-Hut algorithm 
working at 8 = 0.78,) as inferred from the median dri values. 

IV. TIMING RESULTS 

How much faster is the modified algorithm? Unlike the questions of accuracy 
considered above, this one cannot be answered without reference to the machine 
running the code. To obtain any real advantage from this scheme, the vector perfor- 
mance of the hardware must significantly exceed the scalar performance; only then 
will the speedup from the force summation phase significantly outweigh the cost of 
the more complicated tree-search and the generally longer interaction lists. In 
general, this is just the balance of performance offered by conventional array 
processor and supercomputer systems. 

Table I shows force-calculation timings on a Sun 3/60 and Cyber 205 as a 
function of 8 and ncrit. For comparison, timings of the Barnes-Hut algorithm are 
also listed-these are for a version of the code including Hernquist’s partial vec- 

TABLE I 

CPU Timings in Seconds as a Function of 6 (Over) and nc,,r (Down) 
for a Sun 3/60 and Cyber 20.5, Measured Using 

a Plummer Model with N = 8192 Particles 

1” 
16 
64 

256 

1.0 

1155 
1562 
1885 
2212 

Sun 

0.7 

2089 
2635 
2832 
3096 

0.5 1.0 

3698 18.9 
4483 11.1 
4805 8.4 
5175 8.1 

Cyber 

0.7 

33.9 
16.5 
11.1 
10.2 

0.5 

60.3 
26.7 
17.1 
15.3 

a Standard BH algorithm 



torization [7,9]. These times are measured in seconds using a spherical Hummer 
model with N = 8192 particles. Tests with 2048 < N < 14384 particles are cor,sistcnt 
with Q( N log N ) scaling. On a scalar processor such as the Sun MO, the modifkd 
algorithm is slower than the original method. because the time saved in the tree- 
descent is less than the time lost evaluating the ionger interaction lists. On the 
Cyber 205, on the other hand, the modified algorithm is between 2 and 3 kxs 
faster than Barnes--Hut algorithm for a given value of 9, with the greatest speedzp 
found for small 8. This speedup is not very sensitive to I:,,~~ In rhe range studied, 
although for much larger nurit the speedup will be lost as the &l(N’) limit is reached. 
When the increased accuracy of the modified method is talcec into acco~;lnt, rhe 
effective speedup is a factor of 3 to 5, 

Analysis of the modified algorithm at a level of detail sufficient to predict these 
timing results is extremely difficult: since the statistical properties of the m2ss 

diskbution [9] and the performance of the computer hardware are both inboheti. 
A simpie argument, however, can give the overall behavior. The CPlJ time ieqirired 
to evaluate the Corce on all N particles usin g the original Barney 

T= N( T, -c TF), 

where T, is the average time required to construct an interaction list for _ __j TPP 
particle, and TF is the average time to sum the total force on one particle, given Ae 
interaction list. Both T, and TF are (roughly) proportional to rhe length of a 
typicai interaction list, which is O(log N), giving T ^x: ?jlog X asymptotically; L&j. 
The CPU time for the modified algorithm is 

where ivi is the number of interaction lists constructed, T; is the average time ‘:G 
construe; an interaction list for a cell, and Tk is the average time to scm the force 
on a partlcie. Introducing the average number of particles handled per inte~~tion 
list, i: s N;N, G IZ,,,~, gives 

for the modified algorithm. Hence if TL $ TL., as is the case on the Cyber 205, :.he 
modified algorithm can be faster than the original. As fiCrit is increased, the number 
of interaction lists N, is reduced, but the length of each interaction iisr Increases, 
and hence so do T;. and T,L. The optimum value of ncrit depends on the ratio of 
scalar to vector performance but is, in the large N limit, independent of III- itself 

V. CONCLUSIONS 

Empirical tesls show that the modified tree code performs well on 2 \~ctcr- 
oriented machine such as a Cyber 205. For a given ti, the typical gain t;:‘ef 
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Hernquist’s two-phase formulation is somewhat smaller than the gain offered by the 
vectorization methods discussed in [IO, 121. However, for a given level of error, 
quantified by measuring particle displacements at the end of the calculation, the 
modified method permits a somewhat larger value of 8. In terms of overall 
throughput, therefore, the modified method is not at a disadvantage compared to 
other vectorization schemes. The primary advantages of the modified method are 
portabilitJ1 and simplicity. On the software level, the code is written entirely in 
standard F77, with no “vector” extensions or special library calls. On the hardware 
level, the code demands only efficient processing of longish vectors; hardware 
gather/scatter and conditional operations are not needed. The modified method is 
only slightly more complicated than the original Barnes-Hut algorithm; it took less 
than three hours and one hundred additional lines of code to implement. 
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